🎯 Explore Trade-offs

Focus question: How do my objectives balance against each other, and where are the best trade-offs?

Best Trade-off Points

(Pareto solutions)
input_1 input_2 input_3 input_4 input_5 input_6 input_7 input_8 output_1 output_2
0 99.0 NMP 9.62 1.0 L59 | N-XantPhos 0.015 (TMS)3SiH 0.59 0.0 ± 0.0 99.982 ± 0.27
1 102.0 DMAc 9.70 1.0 DPPP 0.016 (TMS)3SiH 0.11 87.518 ± 18.56 0.001 ± 0.22
Table 1: Table summarizing Pareto-optimal solutions, where no objective can be improved without degrading another. This view highlights the set of non-dominated experiments for decision-making in multi-objective optimization.

Pareto Front

(Multi-objective Scatter)
(a) output_1-vs-output_2

Figure 1: 2D scatter plots visualizing the Pareto front, showing the best trade-offs between objectives. These plots reveal how improving one metric impacts another and help select balanced solutions. Note: difficult to interpret with more than 2–3 objectives.

Independently Optimized Outputs

(Single-objective Optima)
Output Optimized input_1 input_2 input_3 input_4 input_5 input_6 input_7 input_8 output_1 output_2
0 output_1 102.0 DMAc 9.70 1.0 DPPP 0.016 (TMS)3SiH 0.11 87.518 ± 18.56 0.001 ± 0.22
1 output_2 103.0 NMP 9.95 1.0 L59 | N-XantPhos 0.015 (TMS)3SiH 0.60 0.0 ± 0.0 99.982 ± 0.49
Table 2: Table of best solutions found when optimizing each output individually. This isolates the maximum potential of each objective but ignores trade-offs with others.

Compare Output Trade-offs

(Parallel coordinates plot)