šŸ› ļø Review Campaign

Focus Question: What decisions and have I already made about my project?

1 Campaign Overview

Title: Multi Objective mixed categorical and numeric inputs (testing)
Description: This is an anonimized dataset for testing purposes
Version Information: Initial version.
Number of Suggestions: 5

2 Input Variable Settings

Categorical, Discrete, or Time Levels

(Input Variable Categories & Levels)

Variable Name Variable Type Number of Levels Levels
input_2 Categorical 6 DMAc,
DMF,
DMPU,
DMSO,
NMP,
Propionitrile
input_5 Categorical 4 DPPP,
L29 | DPPF,
L33 | XantPhos,
L59 | N-XantPhos
input_7 Categorical 2 (TMS)3SiH,
PMHS
TableĀ 1: Table showing categorical, discrete, or time-based input variables and their levels.

Continuous Configuration

(Continuous Variable Ranges & Steps)

input_1 input_3 input_4 input_6 input_8
Min 90.0 6.00 0.5 0.015 0.10
Max 120.0 10.00 1.0 0.042 0.60
Step 1.0 0.01 0.1 0.001 0.01
TableĀ 2: Table displaying the ranges and step sizes for continuous input variables.

3 Output Variable Settings

Output Configuration

(Optimization Objectives, Bounds, & Weights)

Output Objective Weight Bounds Track
0 output_1 maximize 0.5 (0.0, 100.0) False
1 output_2 maximize 0.5 (0.0, 100.0) False
TableĀ 3: Table outlining the objectives, bounds, and weights for output variables.

4 Model

Model Configuration

(Model Type, Hyperparameters, and Settings)

Model Tuning Strategy Hyperparameters
output_1 GP TuningStrategy.ADVANCED Smoothness: 1.5,
Learning Rate: 0.1,
Training Iterations: 200,
Mean Function: constant,
Kernel: rbflinear
output_2 GP TuningStrategy.ADVANCED Smoothness: 1.5,
Learning Rate: 0.1,
Training Iterations: 200,
Mean Function: constant,
Kernel: matern
TableĀ 4: Table summarizing the model type, hyperparameters, and settings used in the campaign.