Title: Multi Objective mixed categorical and numeric inputs (testing)
Description: This is an anonimized dataset for testing purposes
Version Information: Initial version.
Number of Suggestions: 5
š ļø Review Campaign
Focus Question: What decisions and have I already made about my project?
1 Campaign Overview
2 Input Variable Settings
Categorical, Discrete, or Time Levels
(Input Variable Categories & Levels)
| Variable Name | Variable Type | Number of Levels | Levels |
|---|---|---|---|
| input_2 | Categorical | 6 | DMAc, DMF, DMPU, DMSO, NMP, Propionitrile |
| input_5 | Categorical | 4 | DPPP, L29 | DPPF, L33 | XantPhos, L59 | N-XantPhos |
| input_7 | Categorical | 2 | (TMS)3SiH, PMHS |
Continuous Configuration
(Continuous Variable Ranges & Steps)
| input_1 | input_3 | input_4 | input_6 | input_8 | |
|---|---|---|---|---|---|
| Min | 90.0 | 6.00 | 0.5 | 0.015 | 0.10 |
| Max | 120.0 | 10.00 | 1.0 | 0.042 | 0.60 |
| Step | 1.0 | 0.01 | 0.1 | 0.001 | 0.01 |
3 Output Variable Settings
Output Configuration
(Optimization Objectives, Bounds, & Weights)
| Output | Objective | Weight | Bounds | Track | |
|---|---|---|---|---|---|
| 0 | output_1 | maximize | 0.5 | (0.0, 100.0) | False |
| 1 | output_2 | maximize | 0.5 | (0.0, 100.0) | False |
4 Model
Model Configuration
(Model Type, Hyperparameters, and Settings)
| Model | Tuning Strategy | Hyperparameters | |
|---|---|---|---|
| output_1 | GP | TuningStrategy.ADVANCED | Smoothness: 1.5, Learning Rate: 0.1, Training Iterations: 200, Mean Function: constant, Kernel: rbflinear |
| output_2 | GP | TuningStrategy.ADVANCED | Smoothness: 1.5, Learning Rate: 0.1, Training Iterations: 200, Mean Function: constant, Kernel: matern |