| input_1 | input_2 | input_3 | input_4 | input_5 | input_6 | input_7 | input_8 | output_1 | output_2 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 100.0 | DMAc | 10.00 | 1.0 | L29 | DPPF | 0.015 | (TMS)3SiH | 0.6 | 9.0 | 77.0 |
| 1 | 100.0 | DMSO | 10.00 | 1.0 | L29 | DPPF | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 91.0 |
| 2 | 100.0 | NMP | 10.00 | 1.0 | L29 | DPPF | 0.015 | (TMS)3SiH | 0.6 | 12.0 | 77.0 |
| 3 | 100.0 | DMF | 10.00 | 1.0 | L29 | DPPF | 0.015 | (TMS)3SiH | 0.6 | 2.0 | 78.0 |
| 4 | 100.0 | DMPU | 10.00 | 1.0 | L29 | DPPF | 0.015 | (TMS)3SiH | 0.6 | 6.0 | 91.0 |
| 5 | 100.0 | Propionitrile | 10.00 | 1.0 | L29 | DPPF | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 98.0 |
| 6 | 100.0 | DMAc | 10.00 | 1.0 | L33 | XantPhos | 0.015 | (TMS)3SiH | 0.6 | 69.0 | 19.0 |
| 7 | 100.0 | DMSO | 10.00 | 1.0 | L33 | XantPhos | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 86.0 |
| 8 | 100.0 | NMP | 10.00 | 1.0 | L33 | XantPhos | 0.015 | (TMS)3SiH | 0.6 | 54.0 | 37.0 |
| 9 | 100.0 | DMF | 10.00 | 1.0 | L33 | XantPhos | 0.015 | (TMS)3SiH | 0.6 | 6.0 | 87.0 |
| 10 | 100.0 | DMPU | 10.00 | 1.0 | L33 | XantPhos | 0.015 | (TMS)3SiH | 0.6 | 11.0 | 84.0 |
| 11 | 100.0 | Propionitrile | 10.00 | 1.0 | L33 | XantPhos | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 94.0 |
| 12 | 100.0 | DMAc | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | (TMS)3SiH | 0.6 | 76.0 | 23.0 |
| 13 | 100.0 | DMSO | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 91.0 |
| 14 | 100.0 | NMP | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 100.0 |
| 15 | 100.0 | DMF | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 90.0 |
| 16 | 100.0 | DMPU | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | (TMS)3SiH | 0.6 | 12.0 | 76.0 |
| 17 | 100.0 | Propionitrile | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 96.0 |
| 18 | 100.0 | DMAc | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.6 | 89.0 | 2.0 |
| 19 | 100.0 | DMSO | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.6 | 1.0 | 91.0 |
| 20 | 100.0 | NMP | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.6 | 33.0 | 61.0 |
| 21 | 100.0 | DMF | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.6 | 32.0 | 62.0 |
| 22 | 100.0 | DMPU | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.6 | 38.0 | 51.0 |
| 23 | 100.0 | Propionitrile | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.6 | 0.0 | 90.0 |
| 24 | 100.0 | DMAc | 10.00 | 1.0 | L29 | DPPF | 0.015 | PMHS | 0.6 | 5.0 | 93.0 |
| 25 | 100.0 | DMSO | 10.00 | 1.0 | L29 | DPPF | 0.015 | PMHS | 0.6 | 4.0 | 94.0 |
| 26 | 100.0 | NMP | 10.00 | 1.0 | L29 | DPPF | 0.015 | PMHS | 0.6 | 6.0 | 85.0 |
| 27 | 100.0 | DMF | 10.00 | 1.0 | L29 | DPPF | 0.015 | PMHS | 0.6 | 7.0 | 80.0 |
| 28 | 100.0 | DMPU | 10.00 | 1.0 | L29 | DPPF | 0.015 | PMHS | 0.6 | 2.0 | 95.0 |
| 29 | 100.0 | Propionitrile | 10.00 | 1.0 | L29 | DPPF | 0.015 | PMHS | 0.6 | 15.0 | 88.0 |
| 30 | 100.0 | DMAc | 10.00 | 1.0 | L33 | XantPhos | 0.015 | PMHS | 0.6 | 5.0 | 89.0 |
| 31 | 100.0 | DMSO | 10.00 | 1.0 | L33 | XantPhos | 0.015 | PMHS | 0.6 | 18.0 | 71.0 |
| 32 | 100.0 | NMP | 10.00 | 1.0 | L33 | XantPhos | 0.015 | PMHS | 0.6 | 3.0 | 85.0 |
| 33 | 100.0 | DMF | 10.00 | 1.0 | L33 | XantPhos | 0.015 | PMHS | 0.6 | 8.0 | 79.0 |
| 34 | 100.0 | DMPU | 10.00 | 1.0 | L33 | XantPhos | 0.015 | PMHS | 0.6 | 3.0 | 95.0 |
| 35 | 100.0 | Propionitrile | 10.00 | 1.0 | L33 | XantPhos | 0.015 | PMHS | 0.6 | 4.0 | 90.0 |
| 36 | 100.0 | DMAc | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | PMHS | 0.6 | 0.0 | 91.0 |
| 37 | 100.0 | DMSO | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | PMHS | 0.6 | 5.0 | 92.0 |
| 38 | 100.0 | NMP | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | PMHS | 0.6 | 2.0 | 90.0 |
| 39 | 100.0 | DMF | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | PMHS | 0.6 | 2.0 | 88.0 |
| 40 | 100.0 | DMPU | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | PMHS | 0.6 | 0.0 | 99.0 |
| 41 | 100.0 | Propionitrile | 10.00 | 1.0 | L59 | N-XantPhos | 0.015 | PMHS | 0.6 | 1.0 | 93.0 |
| 42 | 100.0 | DMAc | 10.00 | 1.0 | DPPP | 0.015 | PMHS | 0.6 | 5.0 | 92.0 |
| 43 | 100.0 | DMSO | 10.00 | 1.0 | DPPP | 0.015 | PMHS | 0.6 | 10.0 | 82.0 |
| 44 | 100.0 | NMP | 10.00 | 1.0 | DPPP | 0.015 | PMHS | 0.6 | 3.0 | 86.0 |
| 45 | 100.0 | DMF | 10.00 | 1.0 | DPPP | 0.015 | PMHS | 0.6 | 5.0 | 88.0 |
| 46 | 100.0 | DMPU | 10.00 | 1.0 | DPPP | 0.015 | PMHS | 0.6 | 1.0 | 85.0 |
| 47 | 100.0 | Propionitrile | 10.00 | 1.0 | DPPP | 0.015 | PMHS | 0.6 | 7.0 | 85.0 |
| 48 | 110.0 | DMAc | 7.50 | 0.9 | DPPP | 0.020 | (TMS)3SiH | 0.3 | 72.0 | 13.0 |
| 49 | 120.0 | DMAc | 9.20 | 1.1 | DPPP | 0.036 | (TMS)3SiH | 0.6 | 86.0 | 0.0 |
| 50 | 110.0 | DMAc | 13.20 | 0.8 | DPPP | 0.037 | (TMS)3SiH | 0.1 | 66.0 | 20.0 |
| 51 | 90.0 | DMAc | 9.84 | 1.1 | DPPP | 0.037 | (TMS)3SiH | 0.6 | 76.0 | 21.0 |
| 52 | 100.0 | DMAc | 11.60 | 0.5 | DPPP | 0.024 | (TMS)3SiH | 0.2 | 60.0 | 30.0 |
| 53 | 110.0 | DMAc | 13.20 | 0.7 | DPPP | 0.041 | (TMS)3SiH | 0.2 | 89.0 | 0.0 |
| 54 | 90.0 | DMAc | 13.20 | 1.5 | DPPP | 0.040 | PMHS | 0.2 | 0.0 | 98.0 |
| 55 | 100.0 | NMP | 13.20 | 0.8 | DPPP | 0.042 | (TMS)3SiH | 0.2 | 87.0 | 7.0 |
| 56 | 110.0 | DMAc | 7.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.1 | 84.0 | 0.0 |
| 57 | 110.0 | DMAc | 6.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.1 | 85.0 | 0.0 |
| 58 | 110.0 | DMAc | 12.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.1 | 87.0 | 0.0 |
| 59 | 100.0 | DMAc | 6.00 | 1.0 | DPPP | 0.037 | (TMS)3SiH | 0.1 | 82.0 | 14.0 |
| 60 | 100.0 | DMAc | 9.00 | 1.0 | DPPP | 0.030 | (TMS)3SiH | 0.1 | 86.0 | 0.0 |
| 61 | 90.0 | DMAc | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.1 | 88.0 | 0.0 |
| 62 | 120.0 | NMP | 13.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.1 | 87.0 | 0.0 |
| 63 | 110.0 | DMPU | 10.00 | 1.0 | DPPP | 0.015 | (TMS)3SiH | 0.1 | 87.0 | 0.0 |
📊 Explore Data
Focus Question: What’s in my dataset, and how are my variables distributed, related, and missing?
1 Training Data
Training Data
(Completed Experiments Overview)
2 Data Overview
Data Quality Warnings
(Warnings from training data)
| Warning | Message |
|---|---|
| Correlation |
Highly correlated pairs (|corr| > 0.90): Outputs 'output_1' and 'output_2': -0.99. Highly correlated inputs or outputs may reduce model robustness or optimization speed. Consider removing one of the variables if they carry redundant information. |
| Outliers |
The following columns contain values that are unusually far from typical values: 'output_1': [66.0, 69.0, 72.0, 76.0, 82.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, 60.0] 'output_2': [0.0, 2.0, 7.0, 13.0, 14.0] Why does this matter? Outliers can affect the accuracy of machine learning models by skewing results or causing the model to focus too much on rare, extreme values. Consider reviewing these outliers to see if they represent errors in the data. If they are not errors, allow a few optimization rounds to better map the trends. |
Summary of Numeric Columns
(Numeric variable summary statistics)
| input_1 | input_3 | input_4 | input_6 | input_8 | output_1 | output_2 | |
|---|---|---|---|---|---|---|---|
| count | 64.000 | 64.000 | 64.000 | 64.000 | 64.000 | 64.000 | 64.000 |
| mean | 101.250 | 10.062 | 0.991 | 0.018 | 0.500 | 28.016 | 63.594 |
| std | 5.195 | 1.292 | 0.105 | 0.008 | 0.193 | 34.952 | 36.803 |
| min | 90.000 | 6.000 | 0.500 | 0.015 | 0.100 | 0.000 | 0.000 |
| 25% | 100.000 | 10.000 | 1.000 | 0.015 | 0.600 | 2.000 | 22.500 |
| 50% | 100.000 | 10.000 | 1.000 | 0.015 | 0.600 | 6.500 | 85.000 |
| 75% | 100.000 | 10.000 | 1.000 | 0.015 | 0.600 | 66.750 | 91.000 |
| max | 120.000 | 13.200 | 1.500 | 0.042 | 0.600 | 89.000 | 100.000 |
Summary of Categorical Columns
(Categorical Variable Summary Statistics)
| input_2 | input_5 | input_7 | |
|---|---|---|---|
| count | 64 | 64 | 64 |
| unique | 6 | 4 | 2 |
| top | DMAc | DPPP | (TMS)3SiH |
| freq | 21 | 28 | 39 |
3 Explore Variable Distributions
Variable Distributions
(Histogram matrix)Figure 1: Histogram matrix showing the distribution of all variables in the dataset.
Category–Output Comparisons
(Violin plots)Figure 2: Violin plots comparing category levels to output variables.
4 Variable Relationships
Variable Correlation
(Correlation heatmap)Figure 3: Heatmap showing pairwise correlations between numeric variables.
Variable Association
(Mixed-type association heatmap)Figure 4: Heatmap showing associations between mixed variable types.